

Operating instructions

CMSVT38 Vibration and temperature sensor

pulses for automation

Table of contents

1	Docu	Document		
2	Change information			5
3	Gene	ral infor	mation	6
	3.1	Target 0	Group	6
	3.2	Symbols	s used/classification of warnings and safety instructions	7
	3.3	Prelimin	ary Remark	7
	3.4	Feedba	ck	7
	3.5	Transpo	ortation/Storage	7
	3.6	Applicat	ble documents	8
4	Prod	uct desc	ription	9
	4.1	Functior	nal Principle	9
	4.2	Intendeo	d Use	9
	4.3	Example	es of Applications	10
	4.4	Device (Overview	10
		4.4.1	Display Elements	10
	4.5	Foresee	able Misuse	10
	4.6	Functior	ns and Operating Modes	11
	4.7	IO-Link	Mode	11
	4.8	SIO Mo	de (Standard I/O Mode)	11
	4.9	Measuri	ng axis	11
	4.10	Technic	al Data	12
		4.10.1	Product conformity	12
		4.10.2	Dimensions	12
		4.10.3	remperature detection	12
5	Scop	e of Deli	very	13
	5.1	Conditio	on-monitoring sensor CMSVT38	13
6	Prepa	reparations for installation and commissioning1		14
7	Insta	llation		15
	7.1	Mechan	ical Installation	15
		7.1.1	General Information for the Installation of Condition-Monitoring Sensors	15
		7.1.2	Cable Routing	15
	70	Floctric	Installation	10
	1.2	7.2.1	General Instructions for the Connection	17
		7.2.2	Notes on EMC-Compliant Installation	17
		7.2.3	Connecting the Connection Wires	18
		7.2.4	Sensor Terminal Assignment	19

8	Commissioning 2		
	8.1 Status LEDs	20	
9	Settings	21	
	9.1 Functions and properties that can be set	21	
	9.2 Setting via FDT/IODD	23	
10	Maintenance	25	
	10.1 Reassembly	25	
11	Software-Supported IO-Link Parameterization	26	
12	IO-Link-Parameter	27	
	12.1 IO-Link-Parameter	27	
	12.1.1 General Parameters	27	
	12.1.2 Process Input Data	27	
	12.1.3 Standard Parameters	29	
	12.1.4 Parameter	31	
13	Disposal	36	
14	Contact	37	
15	Appendix		
	15.1 Conversion Table Decimal/Hexadecimal	38	
	15.2 Conversion Table Data Types	39	
	Glossary	40	

1 Document

This is the original Operating instructions, source language German.

Publisher	Kübler Group, Fritz Kübler GmbH Schubertstraße 47 78054 Villingen-Schwenningen Germany www.kuebler.com
Date of issue	02/2025
Document no.	D000085279
Copyright	[©] 2025, Kübler Group, Fritz Kübler GmbH

Legal information

All contents of this document are subject to the rights of use and copyright Fritz Kübler GmbH. Any reproduction, modification, re-use and publication thereof on the Internet, including in excerpts, in other electronic or printed media, requires prior written permission from Fritz Kübler GmbH.

The brands and product brands mentioned in this document are trademarks or registered trademarks of the respective title holders.

Subject to errors and changes. Specified product characteristics and technical data do not constitute a warranty.

2 Change information

Index	Chapter	Changes	Date	Name
А		Initial document	2/27/2025	avb

3 General information

Read this document carefully before working with the product.

It guides you or the technical personnel of the machine and plant manufacturer or operator in the safe assembly, installation, commissioning, and operation of the product.

3.1 Target Group

The product may only be planned, installed, commissioned, and maintained by persons who meet the following skill set and conditions:

- Technical education
- · Instruction in valid safety guidelines
- · Permanent access to this documentation

3.2 Symbols used/classification of warnings and safety instructions

	Classification:
	This symbol, in connection with the signal word DANGER, warns of an imminent danger to the life and health of persons.
	Failure to observe this safety instruction will result in death or serious damage to health.
	Classification:
	This symbol, in connection with the signal word WARNING warns of a possible danger to the life and health of persons.
	Failure to observe this safety instruction may result in death or serious damage to health.
	Classification:
	This symbol, in connection with the signal word CAUTION warns of a possible danger to the health of persons.
	Failure to observe this safety instruction may result in minor or slight damage to health.
ATTENTION	Classification:
	Failure to observe the CAUTION note may result in material damage.
NOTICE	Classification:
	Supplementary information on the operation of the product as well as tips and recommendations for efficient and trouble-free operation.

3.3 Preliminary Remark

The following basic safety instructions are intended to prevent personal injury and material damage and relate primarily to the use of the products described here. If you also use other components, also observe their warnings and safety instructions.

3.4 Feedback

Our aim is to make this guide as informative and clear as possible. If you have any suggestions or find that information is missing in the instructions, please send your feedback to: support@kuebler.com.

3.5 Transportation/Storage

Check the delivery immediately after receipt for possible transport damage. If you do not immediately assemble the product, it is best to leave it in the transport packaging.

The storage must:

- be free of any compressive stress to prevent damage or deformation.
- be dry, dust-free, and in accordance with the technical data, see chapter **"Technical Data** [▶ 12]" or **"Applicable documents** [▶ 8]".

3.6 Applicable documents

Technical Data

All technical data, as well as mechanical and electrical characteristics, can be found in the data sheets of the corresponding product versions, or in the corresponding bid / customer drawing of the product for specially-designed models.

Dimensional drawings

The drawings with complete dimensions can be found in the data sheets of the corresponding product versions, or in the corresponding customer drawing of the product for specially-designed models. All non-dimensioned values correspond to the mm unit of measure [inch].

Declarations of conformity and certificates

All documents, for example, the original declarations of conformity and corresponding certificates, can be downloaded from our home page:

www.kuebler.com/docu-finder

NOTICE	Keeping and storing applicable documents
i	For the technical data and dimensional drawings we refer to the data sheet of the corresponding product, and ask you to save and store all applicable documents at the time of commissioning.

4 Product description

4.1 Functional Principle

The condition-monitoring sensors use an acceleration measuring cell with a capacitive measuring method to determine the machine condition. By monitoring vibrations and oscillations, deviations can be detected at an early stage and countermeasures can be initiated. For monitoring, the process value is transferred to the controller via IO-Link. In addition, specific limit value exceedances can be reported via switching outputs.

Temperature detection

The temperature is recorded 10 s after the supply voltage is switched on via an integrated temperature measuring cell. Due to different electrical operating conditions in the sensor, the measured temperature may differ from the ambient temperature.

4.2 Intended Use

The CMSVT38 series condition-monitoring sensors monitor temperature and vibration of machines.

The process values are output by the device via IO-Link.

Additionally, the devices indicate the exceeding of oscillation speeds via switching outputs. The devices are suitable for machine condition monitoring or for use in predictive maintenance.

The device may only be used as described in this manual. Any other use will be regarded as contrary to the intended purpose. The manufacturer assumes no liability for damages resulting from this.

4.3 Examples of Applications

Combination CMSVT38 with signal column and IO-Link master

In IO-Link mode, the vibration sensor CMSVT38 can be connected to an Ethernet network via an IO-Link master.

By communicating with the controller, the IO-Link signal column ST40, for example, can signal the detected statuses on site again.

Combination CMSVT38 with signal light and IO-Link Y-distributor

The vibration sensor CMSVT38 detects vibrations from machines and transmits 2 switching signals for predefined limit values in SiO mode.

Via the IO-Link Y distributor, which also supplies the system with voltage, the switching outputs can be connected directly to the SL35 or SL55 signal lights.

At the same time, the switching signals are also transmitted for further processing. In addition to visualisation, switches, motors or valves can be activated, for example.

The Kübler SL35 and SL55 signal lights are equipped with a predefined switching pattern for this application.

4.4 Device Overview

The condition-monitoring sensors are equipped with a 4-pin M12 connector or with a 30 cm cable and a 4-pin M12 connector for connecting the sensor cable. The housing is made of plastic and is completely encapsulated and designed as a sealed unit in protection class IP68/ IP69K.

The device functions can be set via IO-Link.

4.4.1 Display Elements

The devices have one green and two yellow LEDs. The green LED indicates the operating voltage and the device status. The yellow LEDs indicate the status of the switching outputs. A yellow LED is assigned to each switching output.

4.5 Foreseeable Misuse

The product is not suited for the following applications:

- Under water
- · In publicly accessible areas
- Outside of the product specification.

4.6 Functions and Operating Modes

The devices have an IO-Link interface and can be set either via an IO-Link master or an FDT frame (e.g. PACTware).

4.7 IO-Link Mode

To operate in IO-Link mode, the IO-Link device must be connected to an IO-Link master. If the port is configured in IO-Link mode, bidirectional IO-Link communication takes place between the IO-Link master and the device. To this end, the device is integrated into the control level via an IO-Link master. First, the communication parameters are exchanged, then the cyclical data exchange of the process data (process data objects) begins.

4.8 SIO Mode (Standard I/O Mode)

In standard I/O mode, there is no IO-Link communication between the device and the master. The device only transmits the switching state of its binary outputs and can also be operated via a fieldbus device or a controller with digital PNP or NPN inputs. An IO-Link master is not required for operation.

The device can be parameterized via IO-Link and then operated with the appropriate settings in SIO mode at digital inputs. Not all functions and properties of the device can be used in SIO mode.

4.9 Measuring axis

The devices have three measuring axes. Per measurement axis, 16-bit telegrams are output via IO-Link, which output the oscillation acceleration or the oscillation speed depending on the parameterization. The vibration acceleration or vibration speed can be output as an RMS value or a peak-to-peak value. Additionally, the vector sum is output as a 16-bit telegram.

Fig. 1: CMSVT38 Measuring axes

IMG-ID: 404805515

4.10 Technical Data

NOTICE	Technical Data
	All technical data, as well as mechanical and electrical characteristics, can be found in the data sheets of the corresponding product versions, or in the corresponding bid / customer drawing of the product for specially-designed models.

4.10.1 Product conformity

The product meets the following criteria:

- UL approved for the North American Economic Area.
- · Conformity with European directives:
 - EMV: Directive 2014/30/EU
 - RoHS: Directive 2011/65/EU

The declaration of conformity and all certificates for the product can be found on the homepage.

www.kuebler.com/docu-finder

4.10.2 Dimensions

IMG-ID: 399665675

4.10.3 Temperature detection

The condition monitoring sensors can output the temperature via acyclical data as well as cyclical data (16-bit telegrams). The detection range is -40 \dots +85°C at a resolution of 0.1°C. Accuracy is ±3°C.

5 Scope of Delivery

5.1 Condition-monitoring sensor CMSVT38

The scope of delivery includes:

- Condition-monitoring sensor
- Supplement with QR code and link to https://www.kuebler.com/

6 Preparations for installation and commissioning

Please observe the following instructions before beginning to install the condition-monitoring sensor.

ATTENTION	Damage to the product due to transport or storage
	Product failure, malfunction, reduction of the product service life.
	 Check the packaging and the product for possible damage.
	Do not use or operate the product in the event of visible damage.
	 Do not install the product after a fall or crash.
	 Return damaged products to the manufacturer with a completed returns form (RMA).
NOTICE	Tools
	Use only tools that are subject to a quality system, as well as tested and calibrated tools for assembly.

For problem-free installation you will need the following accessories that are not part of the scope of delivery:

- 2 x M5 cylinder head screws (recommendation) for attaching the condition-monitoring sensor as well as matching tools. The length of the screws depends on the customer application.
- EMC shielding clamp for EMC-suitable installation of the cable (e.g., order no. 8.0000.4G06.0312).

Unless otherwise stated, a coefficient of friction of 0.14 is assumed for all screw connections. For screws, unless otherwise stated, a strength class of 8.8 (metric) or Grade 5 (imperial) is required.

To parameterize device settings via FDT/IODD communication:

• IO-Link master USB USB interface for easy connection to a PC and for power supply.

Pre-assembled cables

- Adapter cable suitable for CMSVT M12 socket with union nut, 4-pin, A-coded, straight end open 2 m PUR cable (order no. 05.00.6061.6211.002M)
- M12 socket with union nut, 4-pin, A-coded, straight male M12 pin, 4-pin, A-coded, straight 2 m PUR cable (order no. 05.00.6061.6462.002M)

Plug connector

 M12 socket with union nut, 4-pin, A-coded, straight (plastic) (order no. 05.B8141-0)

7 Installation

7.1 Mechanical Installation

ATTENTION	Damage to the product due to transport or storage
	Product failure, malfunction, reduction of the product service life.
	 Check the packaging and the product for possible damage.
	• Do not use or operate the product in the event of visible damage.
	 Do not install the product after a fall or crash.
	 Return damaged products to the manufacturer with a completed returns form (RMA).

7.1.1 General Information for the Installation of Condition-Monitoring Sensors

NOTICE	Do not disassemble or open the condition-monitoring sensor
	The function of the condition-monitoring sensor may be partially or completely lost.
	 Never disassemble the Condition Monitoring Sensor fully or partially. Do not modify the condition-monitoring sensor.
	,
NOTICE	Do not expose the condition-monitoring sensor to impact loads
NOTICE	Do not expose the condition-monitoring sensor to impact loads The accuracy and reliability of the condition-monitoring sensor are damaged.
NOTICE	 Do not expose the condition-monitoring sensor to impact loads The accuracy and reliability of the condition-monitoring sensor are damaged. Do not align the condition-monitoring sensor with a hammer.

7.1.2 Cable Routing

NOTICE	Cable routing
	Lay all cables free of tension so that no additional force is applied to the The temperature and vibration sensor. Observe the minimum bending radii of the connecting cable.
	Observe the instructions in the chapter Notes on EMC-compliant Installation [▶ 17].

Wiring

Ensure that the system wiring is properly routed:

- Separate the wiring in line groups such as motor and power supply lines as well as signal and data lines.
- Route the signal and data cables as closely as possible to ground surfaces (support beams, metal rails, cabinet panels) and not parallel to motor and power supply lines or other lines with a high level of interference.
- Do not connect any other consumers with a high level of interference (e.g. frequency converters, solenoid valves, contactors) to the power supply of the device.

7.1.3 Installation Instructions for Condition-Monitoring Sensors

NOTICE

Mount the device rigidly, to avoid measurement inaccuracies due to vibrations. Protective hoods can also reduce accuracy.

The maximum tightening torque of the screws is 3 Nm.

- a) Align one of the three detection axes of the device with the vibration direction.
- b) Position the device as close as possible to the vibration source.
- c) Clean the mounting surface and the mounting environment.
- d) Place the device with the cast side on a flat surface so that the cast compound is covered.
- e) Fasten the device with two screws.

Fig. 3: Assembling the condition-monitoring sensor

IMG-ID: 404792843

7.2 Electrical Installation

7.2.1 General Instructions for the Connection

ATTENTION	Destruction of the device
	Before plugging or disconnecting the signal line, always disconnect the supply voltage and secure it against being switched on again.
NOTICE	General safety instructions
	Make sure that the entire system is de-energized during electrical installation.
ATTENTION	No open cable cores
	Prior to start-up, connect all required cable cores / connectors. Individually insulate all unneeded ends of the output signals to prevent short circuits.
	 The device could be damaged or destroyed by electrostatic discharges at the connector contacts or cable ends. Comply with the corresponding safety measures.
ATTENTION	Strain relief
	Always install strain relief with the cables.

7.2.2 Notes on EMC-Compliant Installation

Requirements for cables

- a) Use only shielded, twisted-pair cables as connection cables for the device.
- b) Observe the maximum permissible cable length of the connection cables.

Shielding and equipotential bonding

- a) Place the cable shield over a large area ideally 360°. Use a shield clamp, for example.
- b) Ensure that the cable shields are properly attached.
- c) Preferably place the shield on protective earth (PE) with low impedance on both sides, e.g. on the device and/or on the evaluation unit. In the case of existing potential differences, the shield may only be placed on one side.
- d) Take appropriate filtering measures if shielding is not possible.
- e) Make sure that no short-term overvoltages can occur on signal and voltage supply lines if the protective earth is only connected to the shield on one side.
- f) For a large-area connection of the cable shield, use the shield clamp provided for this purpose. This can easily be mounted on the top-hat rail:

IMG-ID: 9007199375147403

Order code	8.0000.4G06.0312	8.0000.4G06.0718
Material	Spring steel, galvanized	
Shield diameter	3.0 12.0 mm	7.0 18.0 mm

Kübler offers a wide range of connection cables in various designs and lengths, see www.kuebler.com/anschlusstechnik.

Kübler provides various solutions for EMC-compliant installation, e.g. shielding clamps for the control cabinet, see www.kuebler.com/zubehoer.

7.2.3 Connecting the Connection Wires

ATTENTION	Destruction of electronics
	When assembling the sensor cable, ensure adequate ESD protection.

- Before connecting the connection wires, check which assignment the individual wires have.
- After connection, check the proper application of the supply voltage as well as its proper functioning.

If the supply voltage is reversed, The temperature and vibration sensor does not work.

7.2.4 Sensor Terminal Assignment

- Connect the coupling of the connecting cable to the plug of the sensor.
- Connect the open end of the connecting cable to the power source and/or the evaluation devices.

Interface	M12 connector, male pin, 4-pin, A-coded					
4	Signal:	+V	Out2	0 V	Out 1/IOL	
	Pin:	1	2	3	4	

Supply voltage +V DC
ground GND (0V)
Switching outputs
IO-Link

8 Commissioning

After connecting and switching on the supply voltage, the device is automatically operational.

8.1 Status LEDs

Fig. 4: Status LED

IMG-ID: 404421899

LED		Display	Meaning	
1	PWR/ Green		Device ready for operation	
IOL	IOL	Creen, flashing	IO-Link communication active	
2	Out 1	Yellow	Switching status switching output 1 (parameterizable)	
3	Out 2	Yellow	Switching status switching output 2 (parameterizable)	

9 Settings

9.1 Functions and properties that can be set

Parameter	Meaning
Reset device	The device is restarted. The communication is temporarily interrupted. The measured maximum values of the vibration are reset.
Reset application	The application-specific parameters are reset. Communication is not interrupted. The sensor is placed in a defined operating state. Identification parameters are not affected. The measured maximum values of the vibration are reset.
Restore condition on delivery	The condition on delivery is restored. After restoring, the device is restarted.
Configure process	The following process data can be set:
data	RMS in mm/s
	Peak-to-Peak in mm/s
	RMS in g
	• Peak-to-Peak in g
	The values are determined in configurable time windows and output cyclically.
	Additionally, the maximum values measured since the supply voltage was switched on can be output. If the power supply is interrupted, the maximum values are reset.
Output 1	The switching outputs can be set as normally open (NO) or normally closed (NC) contacts.
Output 1 Configuration	The switching outputs can be configured as PNP or NPN. PNP is active by default.
Output 1 Function	The output can be set as a pre-alarm or warning and as an alarm.
Output 2	The switching outputs can be set as normally open (NO) or normally closed (NC) contacts.
Output 2 Configuration	The switching outputs can be configured as PNP or NPN. PNP is active by default.
Output 2 Function	The output can be set as a pre-alarm or warning and as an alarm.

Parameter	Meaning				
ISO 10816-3	The ISO 10816-3 standard specifies the exact vibration limits for industrial machines. The vibration limit values are used to assess industrial machines with a power of ≥15 kW and a rated speed of 120 rpm. A distinction is made between rigid and flexible assembly. Parameterizable switching outputs with PNP/NPN logic can be used to indicate that the limit values defined in ISO 10816-3 have been exceeded. A distinction is made between the following limit value categories:				
	Newly set up machine				
	Suitable for continuous operation				
	Short-term operation permitted				
	Not permitted				
	The classification in ISO 10816-3 is made into four groups of machines or pumps:				
	 Group 1: Large machines with an output between 300 kW and 50 MW or an electric motor with an axle height ≤ 315 mm 				
	 Group 2: Medium-sized machines with an output between 15 kW and 300 kW or an electric motor with an axle height of 160 mm ≤ 315mm 				
	 Group 3: Pumps with a power > 15 kW and an external drive 				
	 Group 4: Pumps with a power > 15 kW and an integrated drive 				
	The classification of the machine substructures into rigid and flexible results from the ratio of the natural frequency of the overall system of the machine and the substructure as well as the excitation frequency. If the lowest natural frequency of the entire system is at least 25% above the excitation frequency, the machine substructure is designated as rigid. Flexibly mounted machines are damped and more tolerant of vibration than rigidly mounted machines that are not damped.				
	The following parameters can be set according to ISO-10816-3 grouping:				
	Group 1 rigid				
	Group 1 flexible				
	Group 2 rigid				
	Group 2 flexible				
	Group 3 rigid				
	Group 3 flexible				
	Group 4 rigid				
	Group 4 flexible				
	Temperature				
	• Manual				
	Manual limits can be defined for the oscillation speed in mm/s or for the temperature at which the switching outputs are active.				

Parameter	Meaning
Time slots	The effective values of the vibration speed, acceleration or peak-to- peak values are determined and output over the set period of time.
	The following time windows for vibration detection can be defined:
	• 20 ms
	• 100 ms
	• 250 ms
	• 500 ms
	• 1000 ms
Hysteresis	The window of the hysteresis behavior of the switching outputs can be set as a percentage of the parameterized threshold value.
Threshold values	When manually parameterizing the limit values for vibration speed and temperature, values for the pre-alarm or warning or alarm can be set per detection axis.

9.2 Setting via FDT/IODD

The devices can be set via a PC with an FDT frame (e.g. PACTware).

All required Kübler software components can be downloaded from the Kübler website:

- PACTware
- IODD
- DTM for IO-Link Master USB IOL1A. 1K1341.ZZ1UU1
- · IODD DTM Configurator

The files are available for free download at https://www.kuebler.com/.

The IO-Link Master USB IOL1A.1K1341.ZZ1UU1 is required for connection to the PC.

A 4-pin standard sensor cable (e.g. 05.00.6061.6462.002M) is required to connect the sensor to the IO-Link Master USB IOL1A.1K1341.ZZ1UU1.

For more information on setting up the devices via IODD with a configuration tool, see chapter "Software-Supported IO-Link Parameterization [▶ 26]"

Fig. 5: Setting of switching outputs using IO-Link master

IMG-ID: 407225867

1 Vibration sensor	2 IO-Link Master USB
3 Application	4 Adapter cable
5 USB interface	6 Laptop with software

Connection

The vibration sensor 0 is or will be disconnected from the application 3. The IO-Link Master USB 2 is connected to the vibration sensor with the adapter cable 3 and connected to the PC via the USB interface 3.

The following parameters can be set using appropriate software (6) (e.g. PACTware):

Setting options

Reset device	The measured maximum values of the vibration are reset.		
Reset application	The application-specific parameters are reset. The measured maximum values of the vibration are reset.		
Configure process data	The following process data can be set:		
	RMS in mm/s		
	 Peak-to-Peak in mm/s 		
	RMS in g		
	• Peak-to-Peak in g		
Configure switching outputs	Can be set for each switching output:		
	Switching values		
	 Action when the switching values are reached as a normally open (NO) or as normally closed (NC) 		
	PNP or NPN signal		
	Pre-alarm or warning or alarm		

10 Maintenance

Troubleshooting

If the device does not function as expected, check whether there is ambient interference. If there is no ambient interference, check the device connectors for errors.

If none are present, there is a device fault. In this case, take the device out of service and replace it with a new device of the same type.

See chapter Contact [> 37].

If there are questions or when ordering spare parts, have ready the data printed on the device type plate, including the serial number.

Before starting work

- Switch off the power supply and secure it against being switched on again.
- · Then physically disconnect the power supply lines.
- Remove operating and auxiliary materials and residual processing materials Of the temperature and vibration sensor.

10.1 Reassembly

Reinstallation of the product is only permitted under the following conditions:

- The product is undamaged.
- The screws can be tightened again to prevent loosening.
- All safety information in the Installation [> 15] chapter can be observed.
- All assembly steps presented in the Installation [> 15] chapter can be implemented.

11 Software-Supported IO-Link Parameterization

The ports of the IO-Link master can be configured in IO-Link mode (IOL) or in Standard IO mode (SIO).

When a port is configured in SiO mode, the IO-Link master on that port behaves like a normal digital input. The connected IO-Link device transmits its classic switching output to the IO-Link master – there is no communication between the device and the master.

If the port is configured in IOL mode, the IO-Link master tries to wake up the connected IO-Link device via the "Wake-up Request". When the master receives a response from the IO-Link device, both devices begin to communicate with each other. First, the communication parameters are exchanged, then the cyclical data exchange of the process data (Process Data Objects) begins.

In active IO-Link communication (IOL mode), an acyclical communication service is also available in addition to the cyclical one.

There are two options for setting the parameters via IO-Link:

- via on-request data objects (e.g. close to the controller via IO-Link function module)
- via tool-based engineering via FDT/DTM (e.g. PACTware using the DTM or the IODD).

Device parameters (On-request Data Objects)

Device parameters are exchanged acyclically and at the request of the IO-Link master. The IO-Link master always sends a request to the device first, then the device responds. This applies to writing the data into the device as well as to reading the data from the device.

With the help of the on-request data objects (ORDO), parameter values can be written to the device (write) or device statuses can be read from the device (read).

12 IO-Link-Parameter

12.1 IO-Link-Parameter

12.1.1 General Parameters

Parameter	Contents
Vendor ID	480
Vendor Name	Fritz Kuebler GmbH
Device ID	0x700011
IO-Link version	1.1
Bitrate	COM3
Minimum cycle time	1.3 ms
Supports SIO	True
M-Sequence Capability	PREOPERATE = TYPE_1_2 with 2 octet data on request
	OPERATE = TYPE_2_V with 2 octet data on request
	ISDU supported
Block parameters	True
Data Storage	True
ProfileCharacteristic	0x8000: Device Identification 0x8003: Device Diagnosis

12.1.2 Process Input Data

Eight configurations are available for displaying the process input data. The configurations can be set via the **Process data configuration parameter (index 263 or 0x107).** The default setting is Configuration 2. The following configurations are available:

- Configuration 0: RMS in g
- · Configuration 1: Peak-peak in g
- · Configuration 2: RMS in mm/s
- · Configuration 3: Peak-peak in mm/s
- · Configuration 4: max. RMS in g since switching on
- · Configuration 5: max. peak-to-peak in g since switching on
- · Configuration 6: max. RMS in mm/s since switching on
- · Configuration 7: max. peak-to-peak in mm/s since switching on

All configurations have the same process data representation.

Name	Byte.Bit offset	Bit length	Subindex access supported	Data Type	Value	Description
X-axis	8.0	16	True	UInteger	065535	Resolution in 0.01 g or mm/s
Y-axis	6.0	16	True	UInteger	065535	Resolution in 0.01 g or mm/s
Z-axis	4.0	16	True	UInteger	065535	Resolution in 0.01 g or mm/s
Magnitude (vector sum)	2.0	16	True	UInteger	065535	
Current temperature	0.0	16	True	Integer	-32768 +32767	Resolution in 0.1 °C

12.1.3 Standard Parameters

Name	Index (dec)	Index (hex)	Sub- index (dec.)	Sub- index (hex.)	Subindex access supported	Acces s	Byte.Bit offset	Bit length	Data Type	Value	De- fault	Description
Minimum cycle time	0	0x0	3	0x3	True	read	2.0	8	UInteger			
IO-Link Version ID	0	0x0	5	0x5	True	read	4.0	8	UInteger		17	
Manufacturer ID 1	0	0x0	8	0x8	True	read	7.0	8	UInteger			
Manufacturer ID 2	0	0x0	9	X09	True	read	8.0	8	UInteger			
Device ID 1	0	0x0	10	X0A	True	read	9.0	8	UInteger			
Device ID 2	0	0x0	11	0xB	True	read	10.0	8	UInteger			
Device ID 3	0	0x0	12	0xC	True	read	11.0	8	UInteger			
Standard command	2	0x2	0	0x0	True	write	0.0	8	UInteger	0159		System command
										128		Reset device
										129		Reset application
										130		Restore condition on delivery
Parameter (write) access lock	12	0xC	1	0x1	False	Read/ write	0.0	1	Boolean	false/ true		Block device access
Data storage block	12	0xC	2	0x2	False	Read/ write	0.1	1	Boolean	false/ true		Block device access
Local parameterization block	12	0xC	3	0x3	False	Read/ write	0.2	1	Boolean	false/ true		Block device access

Name	Index (dec)	Index (hex)	Sub- index (dec.)	Sub- index (hex.)	Subindex access supported	Acces s	Byte.Bit offset	Bit length	Data Type	Value	De- fault	Description
Local user interface block	12	0xC	4	0x4	False	Read/ write	0.3	1	Boolean	false/ true		Block device access
Manufacturer	16	0x10	0	0x0	True	Read	0.0	40	String		Kuebl	er
name												Manufacturer name
Manufacturer text	17	0x11	0	0x0	True	Read	0.0	104	String		www.	kuebler.de
												Additional manufacturer information
Product name	18	X012	0	0x0	True	Read	0.0	192	String			Type designation
Product ID	19	0x13	0	0x0	True	Read	0.0	72	String			ID
Product text	20	0x14	0	0x0		Read	0.0	512	String			Device category
Serial number	21	X015	0	0x0	True	Read	0.0	128	String			Device serial number
Hardware version	22	0x16	0	0x0	True	Read	0.0	40	String			Hardware status
Firmware version	23	0x17	0	0x0	True	read	0.0	64	String			Firmware version
Application- specific marking	24	0x18	0	0x0	True	Read/ write	0.0	256	String		***	Can be written by any user
Process data input	40	0x28	0	0x0	True	Read	0.0	80	Process- DataInU nion			

12.1.4 Parameter

Name	Index (dec)	Index (hex)	Subin dex (dec.)	Subin dex (hex.)	Subindex access supported	Acces s	Byte. Bit offset	Bit length	Data Type	Value	Default	Description
Function tag	25	0x19	0	0x0	True	read/ write	0.0	256	String	NaN NaN	***	The parameter contains the description of the function of a profile device in an application.
Location tag	26	0x1A	0	0x0	True	read/ write	0.0	256	String	NaN NaN	***	The parameter contains the description of the location of a profile device in an application.
Minimum temperature	256	0x 100	1	0x1	True	read	2.0	16	Integer	-32768 +32767	0	The minimum and maximum measured temperature in °C. The temperature can be measured from -40+105°C.
Maximum temperature	256	0x100	2	0x2	True	read	0.0	16	Integer	-32768 +32767	0	The minimum and maximum measured temperature in °C. The temperature can be measured from -40+105°C.
Hysteresis	258	0x102	0	0x0	True	read/ write	0.0	8	UInteger	0 100	5	Hysteresis in % based on the threshold value
ISO 10816-3 Group	259	0x 103	0	0x0	True	read/ write	0.0	8	UInteger	09	0	Machine group according to ISO 10816-3
										0		Group 1 rigid
										1		Group 1 flexible
										2		Group 2 rigid
										3		Group 2 flexible
										4		Group 3 rigid

Name	Index (dec)	Index (hex)	Subin dex (dec.)	Subin dex (hex.)	Subindex access supported	Acces s	Byte. Bit offset	Bit length	Data Type	Value	Default	Description
										5		Group 3 flexible
										6		Group 4 rigid
										7		Group 4 flexible
										8		Temperature
										9		manual
X-axis pre- alarm threshold	260	0x 104	1	0x1	True	read/ write	14.0	16	UInteger	10 65535	450	Threshold values
X-axis alarm threshold	260	0x 104	2	0x2	True	read/ write	12.0	16	UInteger	10 65535	710	Threshold values
Y-axis pre- alarm threshold	260	0x 104	3	0x3	True	read/ write	10.0	16	UInteger	10 65535	450	Threshold values
Y-axis alarm threshold	260	0x 104	4	0x4	True	read/ write	8.0	16	UInteger	10 65535	710	Threshold values
Z-axis pre- alarm threshold	260	0x 104	5	0x5	True	read/ write	6.0	16	UInteger	10 65535	450	Threshold values
Z-axis alarm threshold	260	0x 104	6	0x6	True	read/ write	4.0	16	UInteger	10 65535	710	Threshold values
Temperature pre-alarm threshold	260	0x 104	7	0x7	True	read/ write	2.0	16	UInteger	10 65535	500	Threshold values
Temperature alarm threshold	260	0x 104	8	0x8	True	read/ write	0.0	16	UInteger	10 65535	600	Threshold values

Name	Index (dec)	Index (hex)	Subin dex	Subin dex	Subindex access	Acces s	Byte. Bit	Bit length	Data Type	Value	Default	Description
			(dec.)	(hex.)	supported		onset					
Operating hours counter	262	0x 106	0	0x0	True	read	0.0	32	UInteger	NaN NaN	0	Time in hours during which the device is in operation
Process data configuration	263	0x 107	0	0x0	True	read/ write	0.0	8	UInteger	07	2	configure which process data is received
										0		RMS in g
										1		Peak-peak in g
										2		RMS in mm/s
										3		Peak-peak in mm/s
										4		max. RMS in g since switching on
										5		max. peak-peak in g since switching on
										6		max. RMS in mm/s since switching on
										7		max. peak-peak in mm/s since switching on
Time window	264	0x	0	0x0	True	read/	0.0	8	UInteger	04	4	Time window
										0		20 ms
										1		100 ms
										2		250 ms
										3		500 ms
										4		1000 ms
Carry out self-test	265	0x109	0	0x0	True	write	0.0	8	UInteger			Self-test

Name	Index (dec)	Index (hex)	Subin dex (dec.)	Subin dex (hex.)	Subindex access supported	Acces s	Byte. Bit offset	Bit length	Data Type	Value	Default	Description
										1		Self-test
Self-test, result	267	0x 10B	0	0x0	True	read	0.0	8	UInteger	02		Result of the self-test
										0		Device not tested
										1		Device is not in order
										2		Device is in order
Output 1	268	0x 10C	0	0x0	True	read/ write	0.0	8	UInteger	01	0	Behavior of the first switching output
										0		NO
										1		NC
Output 1 Configuratio n	269	0x 10D	0	0x0	True	read/ write	0.0	8	UInteger	01	1	Configuration of the first output
										0		NPN
										1		PNP
Alarm function	270	0x 10E	0	0x0	True	read/ write	0.0	8	UInteger	01	0	Alarm function
										0		Pre-alarm
										1		Alarm
Output 2	271	0x 10F	0	0x0	True	read/ write	0.0	8	UInteger	01	0	Behavior of the second switching output
										0		NO
										1		NC

Name	Index (dec)	Index (hex)	Subin dex (dec.)	Subin dex (hex.)	Subindex access supported	Acces s	Byte. Bit offset	Bit length	Data Type	Value	Default	Description
Output 2 Configuratio n	272	0x 110	0	0x0	True	read/ write	0.0	8	UInteger	01	1	Configuration of the second output
										0		NPN
										1		PNP
Alarm function	273	0x 111	0	0x0	True	read/ write	0.0	8	UInteger	01	1	Alarm function
										0		Pre-alarm
										1		Alarm
Output 1	274	0x 112	0	0x0	True	read	0.0	8	UInteger	01		Status of the first output
										0		Off
										1		one
Output 2	275	0x 113	0	0x0	True	read	0.0	8	UInteger	01		Status of the second output
										0		Off
										1		one

13 Disposal

Always dispose of unusable or irreparable products in an environmentally friendly manner in accordance with country-specific requirements and valid waste disposal regulations. We are happy to help you with the disposal of the products.

See chapter Contact [> 37].

NOTICE	Environmental damage due to incorrect disposal
	Electrical waste, electronic components, lubricants, and other auxiliary materials are subject to hazardous waste disposal regulations. Hazardous materials may only be disposed of by authorized specialists.

Dispose of disassembled product parts as follows:

- Metal components to metal scrap
- · Electronic components to electrical scrap
- · Plastic parts to a recycling center.
- Sort and dispose of other components based on material consistency.

14 Contact

If you want to get in touch with us:

Technical advice

For technical advice, analysis or support during installation, Kübler is available directly on site with its global application team.

Support International (English-speaking)

+49 7720 3903 849 support@kuebler.com

Kübler Germany+49 7720 3903 849 Kübler Australia +61 3 7044 0090 Kübler China +86 10 8471 0818 Kübler France+33 3 89 53 45 45 Kübler India +91 8600 147 280 Kübler Italy +39 0 26 42 33 45 Kübler Austria+43 3322 43723 12 Kübler Poland +48 6 18 49 99 02 Kübler Turkey +90 216 999 9791 Kübler USA +1 855 583 2537

Repair Service/RMA Form

For returns, please pack the product adequately and enclose the completed "Returns Form".

www.kuebler.com/rma

Send your return to the following address, stating the RMA reference.

Kübler Group Fritz Kübler GmbH

Schubertstraße 47 D-78054 Villingen-Schwenningen Deutschland

Phone +49 7720 3903 0 Fax +49 7720 21564

info@kuebler.com www.kuebler.com

15 Appendix

15.1 Conversion Table Decimal/Hexadecimal

Dec	Hex								
0	0x0	51	0x33	102	0x66	153	0x99	204	0xCC
1	0x1	52	0x34	103	0x67	154	0x9A	205	0xCD
2	0x2	53	0x35	104	0x68	155	0x9B	206	0xCE
3	0x3	54	0x36	105	0x69	156	0x9C	207	0xCF
4	0x4	55	0x37	106	0x6A	157	0x9D	208	0xD0
5	0x5	56	0x38	107	0x6B	158	0x9E	209	0xD1
6	0x6	57	0x39	108	0x6C	159	0x9F	210	0xD2
7	0x7	58	0x3A	109	0x6D	160	0xA0	211	0xD3
8	0x8	59	0x3B	110	0x6E	161	0xA1	212	0xD4
9	0x9	60	0x3C	111	0x6F	162	0xA2	213	0xD5
10	0xA	61	0x3D	112	0x70	163	0xA3	214	0xD6
11	0xB	62	0x3E	113	0x71	164	0xA4	215	0xD7
12	0xC	63	0x3F	114	0x72	165	0xA5	216	0xD8
13	0xD	64	0x40	115	0x73	166	0xA6	217	0xD9
14	0xE	65	0x41	116	0x74	167	0xA7	218	0xDA
15	0xF	66	0x42	117	0x75	168	0xA8	219	0xDB
16	0x10	67	0x43	118	0x76	169	0xA9	220	0xDC
17	0x11	68	0x44	119	0x77	170	0xAA	221	0xDD
18	0x12	69	0x45	120	0x78	171	0xAB	222	0xDE
19	0x13	70	0x46	121	0x79	172	0xAC	223	0xDF
20	0x14	71	0x47	122	0x7A	173	0xAD	224	0xE0
21	0x15	72	0x48	123	0x7B	174	0xAE	225	0xE1
22	0x16	73	0x49	124	0x7C	175	0xAF	226	0xE2
23	0x17	74	0x4A	125	0x7D	176	0xB0	227	0xE3
24	0x18	75	0x4B	126	0x7E	177	0xB1	228	0xE4
25	0x19	76	0x4C	127	0x7F	178	0xB2	229	0xE5
26	0x1A	77	0x4D	128	0x80	179	0xB3	230	0xE6
27	0x1B	78	0x4E	129	0x81	180	0xB4	231	0xE7
28	0x1C	79	0x4F	130	0x82	181	0xB5	232	0xE8
29	0x1D	80	0x50	131	0x83	182	0xB6	233	0xE9
30	0x1E	81	0x51	132	0x84	183	0xB7	234	0xEA

Dec	Hex								
31	0x1F	82	0x52	133	0x85	184	0xB8	235	0xEB
32	0x20	83	0x53	134	0x86	185	0xB9	236	0xEC
33	0x21	84	0x54	135	0x87	186	0xBA	237	0xED
34	0x22	85	0x55	136	0x88	187	0xBB	238	0xEE
35	0x23	86	0x56	137	0x89	188	0xBC	239	0xEF
36	0x24	87	0x57	138	0x8A	189	0xBD	240	0xF0
37	0x25	88	0x58	139	0x8B	190	0xBE	241	0xF1
38	0x26	89	0x59	140	0x8C	191	0xBF	242	0xF2
39	0x27	90	0x5A	141	0x8D	192	0xC0	243	0xF3
40	0x28	91	0x5B	142	0x8E	193	0xC1	244	0xF4
41	0x29	92	0x5C	143	0x8F	194	0xC2	245	0xF5
42	0x2A	93	0x5D	144	0x90	195	0xC3	246	0xF6
43	0x2B	94	0x5E	145	0x91	196	0xC4	247	0xF7
44	0x2C	95	0x5F	146	0x92	197	0xC5	248	0xF8
45	0x2D	96	0x60	147	0x93	198	0xC6	249	0xF9
46	0x2E	97	0x61	148	0x94	199	0xC7	250	0xFA
47	0x2F	98	0x62	149	0x95	200	0xC8	251	0xFB
48	0x30	99	0x63	150	0x96	201	0xC9	252	0xFC
49	0x31	100	0x64	151	0x97	202	0xCA	253	0xFD
50	0x32	101	0x65	152	0x98	203	0xCB	254	0xFE
								255	0xFF

15.2 Conversion Table Data Types

Data type	Number type	Length in bit	Length in bytes
BOOL	Binary	1	-
BYTE	Binary	8	1
WORD	Binary	16	2
DWORD	Binary	32	4
LWORD	Binary	64	8
SINT	Integer	8	1
INT	Integer	16	2
DINT	Integer	32	4
UINT	Integer	32	4
LINT	Integer	64	8
REAL	Sliding score	32	4
LREAL	Sliding score	64	8

Glossary

BOOL

Data type, a BOOLEAN, stands for a truth value that can be either true or false.

DINT

Data type, an operand of the data type DINT (Double Integer) has a length of 32 bits and consists of two components: a sign and a numerical value in the two's complement.

DWORD

Data type, a DWORD consists of two WORDS, which in turn consists of 2 bytes each and the bytes in turn consist of 8 bits each.

ESD

Electro-static discharge, electrostatic discharges are voltage breakdowns caused by large potential differences, a spark. These breakdowns cause a short, high electric current.

INT

Data type, integer, an integer usually consists of 16 bits.

LWORD

Data type, Long WORD, consists of two DWORD.

PE

Abbreviation: Protective Earth, conductor for the protection of safety against electric shock (earth conductor).

RMA

Engl: Return Material Authorization, authorization to return materials, e.g. in the event of complaints

SINT

Data type, short integer, an operand of the data type SINT (Short INT) has a length of 8 bits and consists of two components: a sign and a numerical value.

UINT

Data type, an operand of the data type UINT (Unsigned INT) has a length of 16 bits and contains unsigned numerical values.

WORD

Data type A WORD contains 2 bytes, which in turn contain 8 bits each.

Kübler Group Fritz Kübler GmbH Schubertstr. 47 D-78054 Villingen-Schwenningen Germany Phone +49 7720 3903-0 Fax +49 7720 21564 info@kuebler.com www.kuebler.com